目前国际公认的自动驾驶分类标准有两个,分别由美国高速公路安全局(NHTSA)和国际自动机工程师协会(SAE)于2013年和2014年首次提出。
值得注意的是,SAE的自动驾驶分级标准(即SAE J3016)于2016年获得了美国交通部DOT(NHTSA是其下属部门)的正式认可。DOT发布的指导性文件《联邦自动驾驶汽车政策》中提到,制造商有责任“根据SAE国际发布的定义确定其系统的AV(自动驾驶汽车)水平”。
现在,SAE定义的自动驾驶分类已经成为业界最常见的参考标准,很多国家的自动驾驶分类都是参考自SAE J3016。
我国工信部去年宣布完成推荐性国家标准《汽车驾驶自动化分级》,即类似于SAE的分级,根据DDT、ODD等工况的不同,将驾驶自动化程度分为L0-L5级。
自2014年首次发布以来,SAE J3016一直与时俱进。截至目前,已分别于2016年、2018年、2021年更新三次。
上月底,SAE和ISO联合发布了最新版本的分级标准。
SAE J3016的最新版本增加了很多术语,进一步完善和澄清了一些容易被误解的原有概念,也对一些术语进行了更具逻辑性的分组和分类。
根据SAE官方声明,这一变化主要包括以下七点:
1.进一步明确了SAE L3和SAE L4的区别,包括要接管的用户角色、SAE L3级自动驾驶自动回退的可能性以及SAE L4级自动驾驶向车内用户报警的可能性;
2.对于两种不同的远程支持功能,添加了附加术语和定义-远程协助和远程驾驶。同时,执行这些不同功能的用户分为:远程助手和远程司机;
3.SAE L1和L2驾驶自动化系统已被命名为“驾驶员支持系统”,与SAE L3-L5中使用的术语“自动驾驶系统”相对应;4.详细阐述了持续驾驶自动化的分类,以及它如何与辅助驾驶和主动安全的更广泛功能相匹配。
5.给出了预警和瞬时驾驶干预系统不纳入自动驾驶分类的原因。
6.车辆类型分为常规车辆、双模车辆和ADS专用车辆,并给出了相应的定义。
7.详细定义和阐述了故障缓解策略的概念。
但新智家通过对比2018年的原文档发现,2021年的更新远不止以上,有多达11168处的改动,其中最重要的改动主要集中在第3章定义。
为此,新智家从中摘录了20条左右的重大变化,列举如下,与大家分享。
注:2018年、2021年SAE J3016完整版可在新智家微信官方账号对话框回复“SAE更新”下载。
修改增删部分
1.第3.21章操作设计域(奇数)增加了注释1、示例1和示例5。
注1:虽然3级和4级ADS功能/车辆被设计为仅在其各自的赔率内运行,但一些奇怪的条件在道路运行期间会发生快速变化(例如,恶劣天气、车道线模糊)。操作环境中的这种短暂变化不一定代表“异常退出”,因为ADS确定条件的这种变化何时需要回退性能(无论是由回退就绪用户还是ADS)。
尽管L3和L4 ADS功能/车辆仅设计为在各自的赔率范围内运行,但在道路运行期间,一些奇怪的情况会快速变化(例如,恶劣天气和模糊的车道线)。操作环境的这种短暂变化并不一定意味着“退出ODD”,因为ADS确定了在这些变化期间何时有必要执行回退(无论是由准备接管的用户还是由ADS)。
例1:1级ACC驾驶员支持功能设计用于在天气晴朗的情况下,在完全进入控制的高速公路上向驾驶员提供纵向车辆运动控制支持。
L1级ACC(自适应巡航技术)驾驶员支持功能旨在为晴朗天气条件下受控高速公路上的驾驶员提供纵向车辆运动控制支持。
示例5:具有清晰可见车道线的奇怪要求的3级ADS高速公路要素遇到一小段车道线模糊的道路。ADS功能能够通过其他方式(例如,传感器融合、数字地图、引导车辆跟随)来弥补短暂的车道标志褪色或缺失,并在车道线再次变得清晰可见之前继续短时间操作车辆。过了一会儿,车道线再次变得模糊不清,并持续更长时间,导致广告功能向准备回退的用户发出干预请求。
当ODD需要车道线清晰可见的L3级ADS高速公路功能时,遇到车道线模糊的短路段,ADS功能可以通过其他方式(如传感器融合、数字地图、车辆跟踪)在短时间内补偿褪色或丢失的车道标志,并在车道线再次清晰可见之前继续短时间运行车辆。之后,如果车道线再次变得模糊,并且持续时间较长,就会导致ADS功能向准备接管的用户发送干预请求。
(2021版)
(2018版)
2.3.25章请求干预,将该术语描述的范围限定为L3自动驾驶仪,并增加了一大段注释。
具体地说,也就是原文中的解释部分:
ADS向准备好回退的用户发出通知,表明……
自动驾驶系统向准备接管的用户发出的通知意味着...
变成了:
由3级ADS提供给备用用户的警报,表示……
L3自动驾驶系统向准备接管的用户发出的警告意味着...
添加备注:
如本文件之前所述,在某些条件下,4级或5级ADS操作车辆中的乘客也可以恢复车辆的手动操作,前提是车辆和功能是为此设计的(例如,双模式车辆或具有4级子行程功能的传统车辆)。然而,即使当ADS发出接管车辆操作的警报时,这种车辆的乘客也不需要这样做来确保正常操作,因为4级和5级ADS功能/车辆可以……必要时自动达到最小风险状态。因此,对4级或5级ADS操作车辆的乘客的这种警告不是此处定义的对3级ADS装备车辆的“干预请求”。
如文件前面所述,在某些条件下,L4或L5 ADS操作的车辆中的乘客也可以恢复车辆的手动操作,前提是车辆和功能是为此目的而设计的(例如,双模式车辆或具有L4子行程功能的常规车辆)。但是,即使通过ADS提醒车辆接管,车辆的乘客也不需要这样做来确保合格的操作,因为L4和L5 ADS功能/车辆可以在必要时自动将风险降至最低。因此,对于由L4或L5 ADS操作的车辆的乘客来说,这种警报不是配备L3自动驾驶系统的车辆中定义的“干预请求”。
(2021版)
(2018版)
3.在第3.30章使用规范中,增加示例1:
一个2级功能提供横向和纵向车辆运动控制支持的司机在完全进入控制的高速公路。
L2级功能为封闭高速公路上的驾驶员提供水平和垂直车辆运动控制支持。
例3在原来的基础上增加了一些细节,来自原来的:
指定城市中心的4级驾驶自动化。
在指定城市中心使用的L4级自动驾驶。目前国际公认的自动驾驶分类标准有两个,分别由美国高速公路安全局(NHTSA)和国际自动机工程师协会(SAE)于2013年和2014年首次提出。
值得注意的是,SAE的自动驾驶分级标准(即SAE J3016)于2016年获得了美国交通部DOT(NHTSA是其下属部门)的正式认可。DOT发布的指导性文件《联邦自动驾驶汽车政策》中提到,制造商有责任“根据SAE国际发布的定义确定其系统的AV(自动驾驶汽车)水平”。
现在,SAE定义的自动驾驶分类已经成为业界最常见的参考标准,很多国家的自动驾驶分类都是参考自SAE J3016。
我国工信部去年宣布完成推荐性国家标准《汽车驾驶自动化分级》,即类似于SAE的分级,根据DDT、ODD等工况的不同,将驾驶自动化程度分为L0-L5级。
自2014年首次发布以来,SAE J3016一直与时俱进。截至目前,已分别于2016年、2018年、2021年更新三次。
上月底,SAE和ISO联合发布了最新版本的分级标准。
SAE J3016的最新版本增加了很多术语,进一步完善和澄清了一些容易被误解的原有概念,也对一些术语进行了更具逻辑性的分组和分类。
根据SAE官方声明,这一变化主要包括以下七点:
1.进一步明确了SAE L3和SAE L4的区别,包括要接管的用户角色、SAE L3级自动驾驶自动回退的可能性以及SAE L4级自动驾驶向车内用户报警的可能性;
2.对于两种不同的远程支持功能,添加了附加术语和定义-远程协助和远程驾驶。同时,执行这些不同功能的用户分为:远程助手和远程司机;
3.SAE L1和L2驾驶自动化系统已被命名为“驾驶员支持系统”,与SAE L3-L5中使用的术语“自动驾驶系统”相对应;4.详细阐述了持续驾驶自动化的分类,以及它如何与辅助驾驶和主动安全的更广泛功能相匹配。
5.给出了预警和瞬时驾驶干预系统不纳入自动驾驶分类的原因。
6.车辆类型分为常规车辆、双模车辆和ADS专用车辆,并给出了相应的定义。
7.详细定义和阐述了故障缓解策略的概念。
但新智家通过对比2018年的原文档发现,2021年的更新远不止以上,有多达11168处的改动,其中最重要的改动主要集中在第3章定义。
为此,新智家从中摘录了20条左右的重大变化,列举如下,与大家分享。
注:2018年、2021年SAE J3016完整版可在新智家微信官方账号对话框回复“SAE更新”下载。
修改增删部分
1.第3.21章操作设计域(奇数)增加了注释1、示例1和示例5。
注1:虽然3级和4级ADS功能/车辆被设计为仅在其各自的赔率内运行,但一些奇怪的条件在道路运行期间会发生快速变化(例如,恶劣天气、车道线模糊)。操作环境中的这种短暂变化不一定代表“异常退出”,因为ADS确定条件的这种变化何时需要回退性能(无论是由回退就绪用户还是ADS)。
尽管L3和L4 ADS功能/车辆仅设计为在各自的赔率范围内运行,但在道路运行期间,一些奇怪的情况会快速变化(例如,恶劣天气和模糊的车道线)。操作环境的这种短暂变化并不一定意味着“退出ODD”,因为ADS确定了在这些变化期间何时有必要执行回退(无论是由准备接管的用户还是由ADS)。
例1:1级ACC驾驶员支持功能设计用于在天气晴朗的情况下,在完全进入控制的高速公路上向驾驶员提供纵向车辆运动控制支持。
L1级ACC(自适应巡航技术)驾驶员支持功能旨在为晴朗天气条件下受控高速公路上的驾驶员提供纵向车辆运动控制支持。
示例5:具有清晰可见车道线的奇怪要求的3级ADS高速公路要素遇到一小段车道线模糊的道路。ADS功能能够通过其他方式(例如,传感器融合、数字地图、引导车辆跟随)来弥补短暂的车道标志褪色或缺失,并在车道线再次变得清晰可见之前继续短时间操作车辆。过了一会儿,车道线再次变得模糊不清,并持续更长时间,导致广告功能向准备回退的用户发出干预请求。
当ODD需要车道线清晰可见的L3级ADS高速公路功能时,遇到车道线模糊的短路段,ADS功能可以通过其他方式(如传感器融合、数字地图、车辆跟踪)在短时间内补偿褪色或丢失的车道标志,并在车道线再次清晰可见之前继续短时间运行车辆。之后,如果车道线再次变得模糊,并且持续时间较长,就会导致ADS功能向准备接管的用户发送干预请求。
(2021版)
(2018版)
2.3.25章请求干预,将该术语描述的范围限定为L3自动驾驶仪,并增加了一大段注释。
具体地说,也就是原文中的解释部分:
ADS向准备好回退的用户发出通知,表明……
自动驾驶系统向准备接管的用户发出的通知意味着...
变成了:
由3级ADS提供给备用用户的警报,表示……
L3自动驾驶系统向准备接管的用户发出的警告意味着...
添加备注:
如本文件之前所述,在某些条件下,4级或5级ADS操作车辆中的乘客也可以恢复车辆的手动操作,前提是车辆和功能是为此设计的(例如,双模式车辆或具有4级子行程功能的传统车辆)。然而,即使当ADS发出接管车辆操作的警报时,这种车辆的乘客也不需要这样做来确保正常操作,因为4级和5级ADS功能/车辆可以……必要时自动达到最小风险状态。因此,对4级或5级ADS操作车辆的乘客的这种警告不是此处定义的对3级ADS装备车辆的“干预请求”。
如文件前面所述,在某些条件下,L4或L5 ADS操作的车辆中的乘客也可以恢复车辆的手动操作,前提是车辆和功能是为此目的而设计的(例如,双模式车辆或具有L4子行程功能的常规车辆)。但是,即使通过ADS提醒车辆接管,车辆的乘客也不需要这样做来确保合格的操作,因为L4和L5 ADS功能/车辆可以在必要时自动将风险降至最低。因此,对于由L4或L5 ADS操作的车辆的乘客来说,这种警报不是配备L3自动驾驶系统的车辆中定义的“干预请求”。
(2021版)
(2018版)
3.在第3.30章使用规范中,增加示例1:
一个2级功能提供横向和纵向车辆运动控制支持的司机在完全进入控制的高速公路。
L2级功能为封闭高速公路上的驾驶员提供水平和垂直车辆运动控制支持。
例3在原来的基础上增加了一些细节,来自原来的:
指定城市中心的4级驾驶自动化。
在指定城市中心使用的L4级自动驾驶。变成:
4级ADS-DV在指定的城市中心低速运行。
L4级自动驾驶专用车在指定市中心低速行驶。
(2021版)
(2018版)
4.第3.31章[人类]用户(指自动驾驶中的人类角色),从原来的4个(1-驾驶员、2-乘客、3-DDT回退就绪用户、4-无人驾驶运营调度员)变成了5个(1-驾驶员、2-乘客、3-DDT回退就绪用户、4-无人驾驶运营调度员、5-远程助手),新增了一项“远程协作者”。
(2021版)
(2018版)
本章对上述人工角色术语进行了逐一解释和举例说明,并做了一些调整,具体如下:
1)3 . 31 . 1[人类]驱动程序,注释的内容由原来的:
在配备有驾驶自动化系统的车辆中,驾驶员可以在给定的行程中承担或恢复来自驾驶自动化系统的部分或全部DDT的性能。
在装备有驾驶自动化系统的车辆中,驾驶员可以在给定的行程中承担或恢复部分或全部自动驾驶系统DDT的执行。
变成:
“驾驶员”的定义不包括设计用于在某些动态测试操作中进行转向、制动和加速的机器人测试装置。
“驾驶员”的定义不包括设计用于在某些动态测试条件下练习转向、制动和加速的机器人测试装置。
此外,第3.31.1节下面列出的细分术语已从最初的[常规]驾驶员和远程驾驶员更新为车内驾驶员和远程驾驶员。
从解释上来说,车内驾驶员与原来的[常规]驾驶员并无区别,是指能够手动操作车内制动、加速、转向、变速器档位选择输入装置来操作车辆的驾驶员。
但车内司机在原有基础上增加了NOTE 2和NOTE 3。
注2:“常规驾驶员”是车内驾驶员的可接受同义词。
“常规驾驶员”可以被接受为车内驾驶员的同义词。
注3:在配有驾驶自动化系统的常规或双模式车辆中,车内驾驶员(可能是乘客或ADS启用期间的备用用户)可在给定行程中承担或恢复驾驶自动化系统的部分或全部DDT性能。
在配备有驾驶自动化系统的常规或双模式车辆中,车辆中的驾驶员(可以是乘客或当ADS启用时准备好接管的用户)可以在给定行程中执行或恢复执行驾驶自动化系统的部分或全部DDT。
(2021版)
(2018版)
2)在3.31.3 [DDT]回退就绪用户一章中,进一步细分了车内回退就绪用户和远程回退就绪用户两个子术语。有关详细信息,请参见新术语部分。
同时,从示例中删除了术语[滴滴涕]备用用户,但使用了类似的情景描述作为新的子术语的示例。
(2021版)
(2018版)
3) 3.31.4无人驾驶操作调度员,补充说明:
注意:调度员也可以执行其他车队操作功能。
调度员可以……因此执行其他车队操作功能。
(2021版)
(2018版)
4)3.31.5远程助手是一个新名词。详情参见“新术语”部分。
5.2018年,分别作为独立章节列出的常规车辆、[装备ADS]双模车辆和ADS专用车辆(ADS-DV)被归入第3.32章[机动]车辆,做了更符合逻辑的分组,即明确将车辆分为常规车辆、双模车辆和ADS专用车辆三种。
其中,[ADS配备]双模式车辆和ADS专用车辆(ADS-DV)的具体内容进行了调整:
1) 3.32.2[配备ads]双模车(配备自动驾驶系统的双模车),做了一些改动以配合文件其他部分的术语调整,增加了注3。
具体来说,2021版强调双模车在给定的ODD内,正常工况下必须无人驾驶,双模车无人驾驶时驾驶员也可以坐在驾驶座上。
2021版:
一种配备ADS的车辆,设计用于在给定ODD(如有)内的常规/正常操作条件下实现无人驾驶操作,或在整个行程中由车内驾驶员操作。
配备ADS的车辆可以在给定ODD(如果有)的正常/正常运行条件下无人驾驶,或者由车辆中的驾驶员驾驶,从而完成整个行程。
注1:当由ADS操作时,双模式车辆可实现无人驾驶操作,尽管人类驾驶员也可出现在驾驶座上。
通过ADS操作时,双模车可以实现无人驾驶操作,同时驾驶员也可以坐在驾驶座上。
注2:仅在部分行程中可用的ADS子行程功能,例如设计用于在高速公路交通堵塞期间执行完整DDT的功能,不足以将其主车辆归类为双模式车辆,因为它不能在完整行程中进行无人驾驶操作。
自动驾驶系统的一个只能在部分行程中使用的子行程功能(比如在高速公路堵车时可以执行所有的滴滴功能)不足以将车辆归类为双模车辆,因为它不可能全程无人驾驶。
注3:配备有5级功能的车辆,在任何时候驾驶员可以选择使用该功能,或者可以选择手动操作车辆,将被归类为双模式车辆。
当具有L5自动驾驶功能的汽车的驾驶员可以选择随时启用自动驾驶功能,或者选择手动操作汽车时,那么该汽车可以被归类为双模汽车。
2018版:
一种配备ADS的车辆,设计用于无人驾驶操作和由传统驾驶员操作的完整行程。
配备ADS的车辆既可以用于无人驾驶操作,也可以用于传统的驾驶员操作,以完成全程。
注1:配备ADS的双模式车辆可以设计成能够在无人驾驶操作中进行调度。
配备ADS的双模式车辆可以设计用于无人操作。
注2:仅在部分行程中可用的ADS功能,例如设计用于在高速公路交通堵塞期间执行完整DDT的功能,不足以将其主车辆归类为双模式车辆,因为它不能在完整行程中进行无人驾驶操作。
一个只能在部分行程中使用的ADS功能(比如在高速公路堵车时可以执行所有的滴滴功能)不足以将车辆归为双模车,因为它不可能全程无人驾驶。
2)3 . 32 . 3 Ads专用车辆(ADS-DV)的定义从原来的:
在给定的奇数限制(如有)范围内,设计专门由4级或5级ADS运行的车辆
在给定的奇数限制(如果有)内,所有的行程都由L4或L5 ADS专门操作。变成:
4级ADS-DV在指定的城市中心低速运行。
L4级自动驾驶专用车在指定市中心低速行驶。
(2021版)
(2018版)
4.第3.31章[人类]用户(指自动驾驶中的人类角色),从原来的4个(1-驾驶员、2-乘客、3-DDT回退就绪用户、4-无人驾驶运营调度员)变成了5个(1-驾驶员、2-乘客、3-DDT回退就绪用户、4-无人驾驶运营调度员、5-远程助手),新增了一项“远程协作者”。
(2021版)
(2018版)
……is章对上述人工角色术语进行了逐一解释和举例说明,并做了一些调整,具体如下:
1)3 . 31 . 1[人类]驱动程序,注释的内容由原来的:
在配备有驾驶自动化系统的车辆中,驾驶员可以在给定的行程中承担或恢复来自驾驶自动化系统的部分或全部DDT的性能。
在装备有驾驶自动化系统的车辆中,驾驶员可以在给定的行程中承担或恢复部分或全部自动驾驶系统DDT的执行。
变成:
“驾驶员”的定义不包括设计用于在某些动态测试操作中进行转向、制动和加速的机器人测试装置。
“驾驶员”的定义不包括设计用于在某些动态测试条件下练习转向、制动和加速的机器人测试装置。
此外,第3.31.1节下面列出的细分术语已从最初的[常规]驾驶员和远程驾驶员更新为车内驾驶员和远程驾驶员。
从解释上来说,车内驾驶员与原来的[常规]驾驶员并无区别,是指能够手动操作车内制动、加速、转向、变速器档位选择输入装置来操作车辆的驾驶员。
但车内司机在原有基础上增加了NOTE 2和NOTE 3。
注2:“常规驾驶员”是车内驾驶员的可接受同义词。
“常规驾驶员”可以被接受为车内驾驶员的同义词。
注3:在配有驾驶自动化系统的常规或双模式车辆中,车内驾驶员(可能是乘客或ADS启用期间的备用用户)可在给定行程中承担或恢复驾驶自动化系统的部分或全部DDT性能。
在配备有驾驶自动化系统的常规或双模式车辆中,车辆中的驾驶员(可以是乘客或当ADS启用时准备好接管的用户)可以在给定行程中执行或恢复执行驾驶自动化系统的部分或全部DDT。
(2021版)
(2018版)
2)在3.31.3 [DDT]回退就绪用户一章中,进一步细分了车内回退就绪用户和远程回退就绪用户两个子术语。有关详细信息,请参见新术语部分。
同时,从示例中删除了术语[滴滴涕]备用用户,但使用了类似的情景描述作为新的子术语的示例。
(2021版)
(2018版)
3) 3.31.4无人驾驶操作调度员,补充说明:
注意:调度员也可以执行其他车队操作功能。
调度员还可以执行其他车队操作功能。
(2021版)
(2018版)
4)3.31.5远程助手是一个新名词。详情参见“新术语”部分。
5.2018年,分别作为独立章节列出的常规车辆、[装备ADS]双模车辆和ADS专用车辆(ADS-DV)被归入第3.32章[机动]车辆,做了更符合逻辑的分组,即明确将车辆分为常规车辆、双模车辆和ADS专用车辆三种。
其中,[ADS配备]双模式车辆和ADS专用车辆(ADS-DV)的具体内容进行了调整:
1) 3.32.2[配备ads]双模车(配备自动驾驶系统的双模车),做了一些改动以配合文件其他部分的术语调整,增加了注3。
具体来说,2021版强调双模车在给定的ODD内,正常工况下必须无人驾驶,双模车无人驾驶时驾驶员也可以坐在驾驶座上。
2021版:
一种配备ADS的车辆,设计用于在给定ODD(如有)内的常规/正常操作条件下实现无人驾驶操作,或在整个行程中由车内驾驶员操作。
配备ADS的车辆可以在给定ODD(如果有)的正常/正常运行条件下无人驾驶,或者由车辆中的驾驶员驾驶,从而完成整个行程。
注1:当由ADS操作时,双模式车辆可实现无人驾驶操作,尽管人类驾驶员也可出现在驾驶座上。
通过ADS操作时,双模车可以实现无人驾驶操作,同时驾驶员也可以坐在驾驶座上。
注2:仅在部分行程中可用的ADS子行程功能,例如设计用于在高速公路交通堵塞期间执行完整DDT的功能,不足以将其主车辆归类为双模式车辆,因为它不具备驾驶能力……完整行程的操作。
自动驾驶系统的一个只能在部分行程中使用的子行程功能(比如在高速公路堵车时可以执行所有的滴滴功能)不足以将车辆归类为双模车辆,因为它不可能全程无人驾驶。
注3:配备有5级功能的车辆,在任何时候驾驶员可以选择使用该功能,或者可以选择手动操作车辆,将被归类为双模式车辆。
当具有L5自动驾驶功能的汽车的驾驶员可以选择随时启用自动驾驶功能,或者选择手动操作汽车时,那么该汽车可以被归类为双模汽车。
2018版:
一种配备ADS的车辆,设计用于无人驾驶操作和由传统驾驶员操作的完整行程。
配备ADS的车辆既可以用于无人驾驶操作,也可以用于传统的驾驶员操作,以完成全程。
注1:配备ADS的双模式车辆可以设计成能够在无人驾驶操作中进行调度。
配备ADS的双模式车辆可以设计用于无人操作。
注2:仅在部分行程中可用的ADS功能,例如设计用于在高速公路交通堵塞期间执行完整DDT的功能,不足以将其主车辆归类为双模式车辆,因为它不能在完整行程中进行无人驾驶操作。
一个只能在部分行程中使用的ADS功能(比如在高速公路堵车时可以执行所有的滴滴功能)不足以将车辆归为双模车,因为它不可能全程无人驾驶。
2)3 . 32 . 3 Ads专用车辆(ADS-DV)的定义从原来的:
在给定的奇数限制(如有)范围内,设计专门由4级或5级ADS运行的车辆
在给定的奇数限制(如果有)内,所有的行程都由L4或L5 ADS专门操作。调整到:
在给定ODD(如有)内的所有行程中,为常规/正常运行条件下的无人驾驶操作而设计的装有ADS的车辆
装有ADS的车辆可以在给定的ODD(如果有的话)内,实现正常/正常工况下的全程无人驾驶运行。
即2018版定义的ADS-DV是指专为L4和L5自动驾驶设计的车辆,而最新版指出任何配备ADS系统(L3-L5)的车辆都是ADS-DV。
基于这一变化,在2018版本中,将ADS-DV定义为无人驾驶车辆的NOTE 2不再有效,因此被删除。
这个定义范围的变化已经追溯到2018版的NOTE 1:
经过大量辩论后,ADS-DV仅限于驾驶自动化级别4和5的限制在J3016的这一版本中保持不变。关于可能将远程备用用户的3级包括在该定义中的进一步讨论将在J3016的下一个版本中进行,该版本将与ISO共同完成。
经过多次论证,ADS-DV对L4和L5驾驶自动化水平的限制在本版本中保持不变。在J3016的下一个版本中,将进一步讨论在该定义中包括L3和远程准备接管用户的可能性,该版本将与ISO一起完成。
2021版NOTE 1也解释了这一变化:
与规定ADS-DV限于4级和5级的本文件之前版本相比,如果远程备用用户能够接受ADS发出的干预请求和车辆中明显的DDT性能相关系统故障,ADS-DV的修订定义也考虑了3级ADS-DV的可能性。一旦这些情况中的任何一种发生,远程回退就绪用户就开始使用无线手段(几乎)实时执行DDT回退。(另见3.24和3.22)。)
与之前版本的文件不同,之前的版本规定ADS-DV只能限制在L4和L5级别。这次修订的ADS-DV定义考虑了L3级ADS-DV的可能性,前提是远程预备接管用户不仅可以接受来自ADS的干预请求,还可以响应与车辆DDT操作相关的系统故障。一旦这些情况发生,准备接管的远程用户将通过无线方式开始(近)实时执行DDT回退。
2021版NOTE 2在原NOTE 3的基础上进行了修改:
更新版本:
ADS-DV可以设计为……t设计为可由车内驾驶员操作的用户界面,例如制动、加速、转向和变速器档位选择输入装置,或者可以设计为在常规/正常操作条件下这些装置不起作用。
ADS-DV可能没有为汽车中的驾驶员设计的可操作用户界面,例如制动、加速、转向和变速器档位选择输入设备,或者可能设计为这些设备在正常/正常操作条件下不工作。
2018版:
ADS-DV可以被设计成没有被设计成可由传统人类驾驶员操作的用户界面,例如制动、加速、转向和变速器档位选择输入设备。
在ADS-DV的汽车中可能没有为传统人类驾驶员设计的可操作的用户界面,例如制动、加速、转向和变速器档位选择输入设备。
(2021版)
(2018版)
6.第4章驾驶自动化分类,其中表1和表3有所调整。
1)表1-驾驶自动化水平汇总进一步将L1-L2自动驾驶归类为驾驶员支持,而L3-L5自动驾驶功能归类为自动驾驶。
值得注意的是,在2018年版本的文件中,已经初步定义了驾驶员支持是指L1和L2自动驾驶功能,而此次更新版本不仅在提及L1和L2自动驾驶时多次使用这一描述(2018年版本在定义时仅提及这一术语),还在汇总表中进一步明确了其与自动驾驶提及L3-L5自动驾驶的对应关系。
(2021版)
(2018版)
2)表3-用户角色驾驶自动化系统启用时,L4和L5的远程用户在原无人驾驶运营调度员的基础上增加了一个新的角色:远程助理,与之前的调整相对应。
(2021版)
(2018版)
7.第五章,驾驶自动化的级别或类别,详细介绍了各个级别自动驾驶的具体内容,其中L1、L3、L4和L5的内容进行了调整,进一步明确了自动驾驶的功能分类。
1)第5.2章级别或类别1-驾驶员辅助(L1级别,驾驶员辅助)增加了注释2和注释3,进一步解释了驾驶员辅助和ADAS这两个常用术语所指的具体功能和情况,并指出ADAS的使用范围在一些技术文件中过于宽泛。
注2:作为修饰语的术语“驾驶员辅助”也通常用于描述不被视为自动驾驶系统功能的汽车功能,因为它们不能提供部分或全部滴滴涕的持续性能。
作为修饰语,“驾驶员辅助”一词通常用于描述不被认为是驾驶自动化系统功能的汽车功能,因为它们不能连续执行部分或全部DDT。
注3:术语“高级驾驶员辅助系统”(ADAS)通常用于描述广泛的功能,包括提供警告和/或瞬时干预的功能,如前方碰撞警告(FCW)系统、车道保持辅助(LKA)系统和自动紧急制动(AEB)系统,以及一些涉及1级驾驶员支持功能的便利功能,如ACC和某些停车辅助功能。因此,术语ADAS对于在技术定义文档中使用来说过于宽泛和不精确。
“高级驾驶辅助系统”(ADAS)一词通常用于描述一系列功能,包括提供早期预警和/或瞬时干预,如前方碰撞预警(FCW)系统、车道保持辅助(LKA)系统和自动紧急制动(AEB)系统,以及一些涉及L1驾驶支持功能的便捷功能,如ACC和一些泊车辅助功能。因此,ADAS一词在技术定义文档中使用得过于宽泛和不准确。
(2021版)
(2018版)
2)第5.4章级别或类别3-条件驾驶自动化(L3),增加注释1和注释6。
注1:与1级和2级驾驶员支持功能不同,所有3级和4级ADS功能旨在监控和强制实施其ODD限制,并防止超出其规定ODD的接合或操作。
与1级和2级的驾驶员支持功能不同,3级和4级的所有自动驾驶功能都是为了在系统运行时监控和强制执行ODD限制,并防止ODD的使用或操作超出其要求。调整到:
为无人驾驶设计的装有ADS的车辆……在其给定ODD(如有)内所有行程中常规/正常操作条件下的操作
装有ADS的车辆可以在给定的ODD(如果有的话)内,实现正常/正常工况下的全程无人驾驶运行。
即2018版定义的ADS-DV是指专为L4和L5自动驾驶设计的车辆,而最新版指出任何配备ADS系统(L3-L5)的车辆都是ADS-DV。
基于这一变化,在2018版本中,将ADS-DV定义为无人驾驶车辆的NOTE 2不再有效,因此被删除。
这个定义范围的变化已经追溯到2018版的NOTE 1:
经过大量辩论后,ADS-DV仅限于驾驶自动化级别4和5的限制在J3016的这一版本中保持不变。关于可能将远程备用用户的3级包括在该定义中的进一步讨论将在J3016的下一个版本中进行,该版本将与ISO共同完成。
经过多次论证,ADS-DV对L4和L5驾驶自动化水平的限制在本版本中保持不变。在J3016的下一个版本中,将进一步讨论在该定义中包括L3和远程准备接管用户的可能性,该版本将与ISO一起完成。
2021版NOTE 1也解释了这一变化:
与规定ADS-DV限于4级和5级的本文件之前版本相比,如果远程备用用户能够接受ADS发出的干预请求和车辆中明显的DDT性能相关系统故障,ADS-DV的修订定义也考虑了3级ADS-DV的可能性。一旦这些情况中的任何一种发生,远程回退就绪用户就开始使用无线手段(几乎)实时执行DDT回退。(另见3.24和3.22)。)
与之前版本的文件不同,之前的版本规定ADS-DV只能限制在L4和L5级别。这次修订的ADS-DV定义考虑了L3级ADS-DV的可能性,前提是远程预备接管用户不仅可以接受来自ADS的干预请求,还可以响应与车辆DDT操作相关的系统故障。一旦这些情况发生,准备接管的远程用户将通过无线方式开始(近)实时执行DDT回退。
2021版NOTE 2在原NOTE 3的基础上进行了修改:
更新版本:
ADS-DV可能设计为没有设计为可由车内驾驶员操作的用户界面,例如制动、加速、转向和变速器档位选择输入设备,或者可能设计为这些设备在常规/正常操作条件下不起作用。
ADS-DV可能没有为汽车中的驾驶员设计的可操作用户界面,例如制动、加速、转向和变速器档位选择输入设备,或者可能设计为这些设备在正常/正常操作条件下不工作。
2018版:
ADS-DV可以被设计成没有被设计成可由传统人类驾驶员操作的用户界面,例如制动、加速、转向和变速器档位选择输入设备。
在ADS-DV的汽车中可能没有为传统人类驾驶员设计的可操作的用户界面,例如制动、加速、转向和变速器档位选择输入设备。
(2021版)
(2018版)
6.第4章驾驶自动化分类,其中表1和表3有所调整。
1)表1-驾驶自动化水平汇总进一步将L1-L2自动驾驶归类为驾驶员支持,而L3-L5自动驾驶功能归类为自动驾驶。
值得注意的是,在2018年版本的文件中,已经初步定义了驾驶员支持是指L1和L2自动驾驶功能,而此次更新版本不仅在提及L1和L2自动驾驶时多次使用这一描述(2018年版本在定义时仅提及这一术语),还在汇总表中进一步明确了其与自动驾驶提及L3-L5自动驾驶的对应关系。
(2021版)
(2018版)
2)表3-用户角色驾驶自动化系统启用时,L4和L5的远程用户在原无人驾驶运营调度员的基础上增加了一个新的角色:远程助理,与之前的调整相对应。
(2021版)
(2018版)
7.第5章,驾驶自动化的级别或类别,详细说明了各个级别自动驾驶的具体内容,其中L1、L3、L4和L5的内容有所调整……进一步明确自动驾驶的功能分类。
1)第5.2章级别或类别1-驾驶员辅助(L1级别,驾驶员辅助)增加了注释2和注释3,进一步解释了驾驶员辅助和ADAS这两个常用术语所指的具体功能和情况,并指出ADAS的使用范围在一些技术文件中过于宽泛。
注2:作为修饰语的术语“驾驶员辅助”也通常用于描述不被视为自动驾驶系统功能的汽车功能,因为它们不能提供部分或全部滴滴涕的持续性能。
作为修饰语,“驾驶员辅助”一词通常用于描述不被认为是驾驶自动化系统功能的汽车功能,因为它们不能连续执行部分或全部DDT。
注3:术语“高级驾驶员辅助系统”(ADAS)通常用于描述广泛的功能,包括提供警告和/或瞬时干预的功能,如前方碰撞警告(FCW)系统、车道保持辅助(LKA)系统和自动紧急制动(AEB)系统,以及一些涉及1级驾驶员支持功能的便利功能,如ACC和某些停车辅助功能。因此,术语ADAS对于在技术定义文档中使用来说过于宽泛和不精确。
“高级驾驶辅助系统”(ADAS)一词通常用于描述一系列功能,包括提供早期预警和/或瞬时干预,如前方碰撞预警(FCW)系统、车道保持辅助(LKA)系统和自动紧急制动(AEB)系统,以及一些涉及L1驾驶支持功能的便捷功能,如ACC和一些泊车辅助功能。因此,ADAS一词在技术定义文档中使用得过于宽泛和不准确。
(2021版)
(2018版)
2)第5.4章级别或类别3-条件驾驶自动化(L3),增加注释1和注释6。
注1:与1级和2级驾驶员支持功能不同,所有3级和4级ADS功能旨在监控和强制实施其ODD限制,并防止超出其规定ODD的接合或操作。
与1级和2级的驾驶员支持功能不同,3级和4级的所有自动驾驶功能都是为了在系统运行时监控和强制执行ODD限制,并防止ODD的使用或操作超出其要求。近年来,随着新能源汽车销量的快速增长,我国新能源汽车尤其是纯电动汽车的数量正呈现持续快速增长的趋势。
部数据显示,我国新能源汽车保有量已连续三年突破100万辆。截至2020年底,我国新能源汽车保有量已达492万辆。其中纯电动汽车保有量为400万辆,占比81.32%。
新能源汽车尤其是纯电动汽车的增加,正在催生一个不断增长的充电服务市场。
目前这条赛道,除了已经自建充电站刺激市场购车需求的新能源汽车公司外,还吸引了众多专业从事充电桩建设、管理和运营的充电服务商。
在多方共同努力下,截至2020年12月底,我国公共充电桩数量已从2015年的不足5万个增加到80.7万个,公共充电站数量也从不足2000个增加到目前的6.38万多个。
但是,这么多充电桩怎么运营、管理、维护呢?车主如何在城市各个区域找到站点,及时补充电量?充电服务市场在经历了早期暴力扩张的阶段后将何去何从?随着电池技术的不断进步,不断增加的续航里程会给充电运营商带来哪些新的挑战?
围绕这些问题,近日,新智家与典满旅游CEO王赢进行了一次对话。
从基础服务到智能充电服务
中国电动汽车充电基础设施推进联盟发布的数据显示,截至2021年4月,我国充电基础设施累计数量为182.7万个,同比增长42.0%。公共充电基础设施累计建设86.8万台,同比增长58.8%。
随着充电基础设施的全面铺开,如何整合现有的充电服务网络,规划和布局自己的品牌专用充电网络已经……成为未来新能源出行服务市场竞争的关键。对于新能源车主来说,如何及时找到相应的充电站,如何根据电池电量来安排行驶路线和充电频率,也成为急需解决的用车问题。
基于这种市场需求,致力于将充电需求和出行场景有效结合的聚合服务平台应运而生。
其中,2019年正式成立、从四维图新孵化出来的子公司出行动力十足。依托母公司在技术、生态、品牌等方面的积累和支持,主要通过大数据、智能规划等技术赋能车企、出行平台等企业客户,进而在其平台上为消费者提供差异化充电服务。
王赢告诉新智家,四维图新的集团定位是“智能汽车大脑”,主要包括技术和生态两大板块。全电出行是属于它的生态板块,旨在通过充电平台的运营能力进一步体现生态价值。
作为连接充电硬件供应商和新能源车主的桥梁,全电出行不仅可以帮助B端客户面向C端,还可以为消费者提供高效的充电方案规划、充电健康的分解和识别等智能安全的充电服务。还可以通过日常运营的大数据分析,为B端客户提供充电站点建设的优化方案。
从粗放布局到精细化管理
事实上,在行业发展初期,国内大部分企业更多考虑的是如何抢占好地段,在短时间内用充足的资金建设更多的充电站。至于后续的运维管理,车主的真实需求等与用户体验相关的问题很少出现在这些企业的考虑中。
潮水退去,前期发展不均衡、规划布局过于粗放导致的充电桩整体利用率低、回报周期长等遗留问题逐渐显现。
艾瑞咨询的报告认为,2019年公共充电桩建设迎来战略调整期,主要体现在逐渐脱离“超前建设”的增长模式,进入良性的需求驱动增长阶段。
未来充电服务行业企业的核心竞争力将从早期的资源整合能力转变为综合运维能力,即规划布局合理化、运营方案差异化、基础设施互联互通等。
王赢持有类似的观点。
她表示,对于新能源汽车充电服务来说,今年或明年将进入一个加紧推进的阶段,相当于从早期的萌芽阶段转变到真正的服务运营层面。
“早期暴力扩张的阶段过去后,可能是更理性的投资和更注重用户体验的收费服务。”王赢说,“事实证明,大家可能会靠抢地段、抢位置、抢资金来看谁建的充电站多。但是现在大家都比较理性,不仅仅是在量级上比拼谁建的站点多,而是考虑如何提高精细化运营的服务能力,提高整个服务特色中附加体验的软价值。”
在她看来,近两年将会有各种特色运营场景下不同业务合作模式的服务出现,填补目前的市场空白。
续航里程的提高将积极推动充电市场的发展和改革。
与此同时,在蓬勃发展的新能源汽车市场的推动下,车载电池的续航里程也在不断上升。
在今年的中国电动汽车百人会上,中国科学院院士高指出,目前中国在电池材料方面的研究已处于国际领先行列。随着高能量密度三元电池的产业化和电池系统的结构创新,车载电池的能量大大增加。
特别是CTP的无模块技术、刀片电池等结构创新,大大提高了电池分组效率,使搭载磷酸铁锂电池的车辆续航里程达到600公里。
然而,当耐力……f车载动力电池越来越强,消费者对充电的需求会降低吗?整个充电服务市场会受到不利影响吗?
王赢对这个问题给予了否定的回答。
她认为“续航里程的提高只是降低了充电的频率。实际上,续航里程越长,对充电技术或服务能力的改变要求就越高。这是一个不断相互促进的过程。”
具体来说,当续航里程变长时,充电技术、充电运营的重点、充电桩的分布和建设以及策略都会有相应的调整。
在王赢看来,当电池的续航里程只有200公里时,充电桩的建设强调密度。但当续航里程能达到700甚至1000公里时,就要考虑服务的广度了。
“以前可以在城市的某个区域增加充电桩的密度,现在新能源汽车可以说走就走,整个活动范围变得越来越大,这将使得对充电平台服务的智能化和精准化的要求越来越严格,消费者对充电服务的质量和能力的需求也将升级。"
此外,更大的电池容量带来的更长的续航里程也会推高人们对充电效率的要求,高效充电技术和快速充电桩的建设也将在这个过程中得到进一步推进。
此外,电池寿命的提高也将增强消费者选择购买新能源汽车的信心。当新能源汽车保有量越来越高的时候,充电服务行业也会越来越繁荣。在这个过程中,随着流量和收费服务频次的增加,之前在收费运营中遇到的问题也会随着这些用户数据的反馈而得到解决。
从这个意义上来说,续航里程的提升其实对整个充电市场起到了积极的推动作用。
雷锋网雷锋网雷锋网(微信官方账号:雷锋网)
雷锋的原创文章。未经授权,禁止转载。详见转载说明。近年来,随着新能源汽车销量的快速增长,我国新能源汽车尤其是纯电动汽车的数量正呈现持续快速增长的趋势。
部数据显示,我国新能源汽车保有量已连续三年突破100万辆。截至2020年底,我国新能源汽车保有量已达492万辆。其中纯电动汽车保有量为400万辆,占比81.32%。
新能源汽车尤其是纯电动汽车的增加,正在催生一个不断增长的充电服务市场。
目前这条赛道,除了已经自建充电站刺激市场购车需求的新能源汽车公司外,还吸引了众多专业从事充电桩建设、管理和运营的充电服务商。
在多方共同努力下,截至2020年12月底,我国公共充电桩数量已从2015年的不足5万个增加到80.7万个,公共充电站数量也从不足2000个增加到目前的6.38万多个。
但是,这么多充电桩怎么运营、管理、维护呢?车主如何在城市各个区域找到站点,及时补充电量?充电服务市场在经历了早期暴力扩张的阶段后将何去何从?随着电池技术的不断进步,不断增加的续航里程会给充电运营商带来哪些新的挑战?
围绕这些问题,近日,新智家与典满旅游CEO王赢进行了一次对话。
从基础服务到智能充电服务
中国电动汽车充电基础设施推进联盟发布的数据显示,截至2021年4月,我国充电基础设施累计数量为182.7万个,同比增长42.0%。公共充电基础设施累计建设86.8万台,同比增长58.8%。
随着充电基础设施的全面铺开,如何整合现有充电服务网络,规划布局自有品牌专用充电网络,成为未来新能源出行服务市场竞争的关键。对于新能源车主来说,如何找到正确的……及时选择充电站,如何根据电池电量来安排行驶路线和充电频率也成为车辆使用中迫切需要解决的问题。
基于这种市场需求,致力于将充电需求和出行场景有效结合的聚合服务平台应运而生。
其中,2019年正式成立、从四维图新孵化出来的子公司出行动力十足。依托母公司在技术、生态、品牌等方面的积累和支持,主要通过大数据、智能规划等技术赋能车企、出行平台等企业客户,进而在其平台上为消费者提供差异化充电服务。
王赢告诉新智家,四维图新的集团定位是“智能汽车大脑”,主要包括技术和生态两大板块。全电出行是属于它的生态板块,旨在通过充电平台的运营能力进一步体现生态价值。
作为连接充电硬件供应商和新能源车主的桥梁,全电出行不仅可以帮助B端客户面向C端,还可以为消费者提供高效的充电方案规划、充电健康的分解和识别等智能安全的充电服务。还可以通过日常运营的大数据分析,为B端客户提供充电站点建设的优化方案。
从粗放布局到精细化管理
事实上,在行业发展初期,国内大部分企业更多考虑的是如何抢占好地段,在短时间内用充足的资金建设更多的充电站。至于后续的运维管理,车主的真实需求等与用户体验相关的问题很少出现在这些企业的考虑中。
潮水退去,前期发展不均衡、规划布局过于粗放导致的充电桩整体利用率低、回报周期长等遗留问题逐渐显现。
艾瑞咨询的报告认为,2019年公共充电桩建设迎来战略调整期,主要体现在逐渐脱离“超前建设”的增长模式,进入良性的需求驱动增长阶段。
未来充电服务行业企业的核心竞争力将从早期的资源整合能力转变为综合运维能力,即规划布局合理化、运营方案差异化、基础设施互联互通等。
王赢持有类似的观点。
她表示,对于新能源汽车充电服务来说,今年或明年将进入一个加紧推进的阶段,相当于从早期的萌芽阶段转变到真正的服务运营层面。
“早期暴力扩张的阶段过去后,可能是更理性的投资和更注重用户体验的收费服务。”王赢说,“事实证明,大家可能会靠抢地段、抢位置、抢资金来看谁建的充电站多。但是现在大家都比较理性,不仅仅是在量级上比拼谁建的站点多,而是考虑如何提高精细化运营的服务能力,提高整个服务特色中附加体验的软价值。”
在她看来,近两年将会有各种特色运营场景下不同业务合作模式的服务出现,填补目前的市场空白。
续航里程的提高将积极推动充电市场的发展和改革。
与此同时,在蓬勃发展的新能源汽车市场的推动下,车载电池的续航里程也在不断上升。
在今年的中国电动汽车百人会上,中国科学院院士高指出,目前中国在电池材料方面的研究已处于国际领先行列。随着高能量密度三元电池的产业化和电池系统的结构创新,车载电池的能量大大增加。
特别是CTP的无模块技术、刀片电池等结构创新,大大提高了电池分组效率,使搭载磷酸铁锂电池的车辆续航里程达到600公里。
但是,当车载动力电池的续航能力越来越强时,消费者对充电的需求会降低吗?会不会……ntire charging service market be adversely affected?
Wang Ying gave a negative answer to this question.
She believes that "the improvement of cruising range only reduces the frequency of charging. In fact, the longer the cruising range, the higher the requirements for the change of charging technology or service ability. This is a process of continuous mutual promotion. "
Specifically, when the cruising range becomes longer, the charging technology, the focus of charging operation, the distribution and construction of charging piles and the strategy will be adjusted accordingly.
In Wang Ying's view, when the battery's cruising range was only 200 kilometers, the construction of charging piles emphasized density. However, when the cruising range can reach 700 or even 1000 kilometers, the breadth of service should be considered.
"It used to be possible to increase the density of charging piles in a certain area of the city, but now the new energy vehicles can be said to leave, and the whole range of activities has become larger and larger, which will make the requirements for the intelligence and accuracy of charging platform services more and more strict, and consumers' demand for the quality and ability of charging services will also be upgraded."
In addition, the longer cruising range brought by the larger battery capacity will also push up people's requirements for charging efficiency, and the construction of efficient charging technology and fast charging piles will also be further promoted in this process.
In addition, the improvement of the battery life will also enhance consumers' confidence in choosing to buy new energy vehicles. When the number of new energy vehi cles is getting higher and higher, the charging service industry will also become more prosperous. In this process, with the increase of traffic and charging service frequency, the problems encountered in charging operation before will also be solved with the feedback of these user data.
In this sense, the improvement of cruising range has actually played a positive role in promoting the entire charging market.
Lei Feng Net Lei Feng Net Lei Feng Net (WeChat official account: Lei Feng Net)
The original article of Leifeng. com is prohibited from being reproduced without authorization. See the instructions for reproducing for details. 2021 edition:
A vehicle equipped with ADS may have an additional fault mitigation strategy, which aims to make the vehicle stop in any position under control. For example, if the in-vehicle back-off ready user of the 3-level sub-trip traffic jam function fails to respond to the intervention request after the traffic is clear (abnormal situation), the vehicle may have a fault mitigation strategy, which aims to make the vehicle stop in its current driving lane and turn on the emergency light. Figure 13 shows a sample use case sequence.
Vehicles equipped with Ammunition Delivery System may have an additional fault mitigation strategy, which can make the vehicle stop at any place. For example, if the car in L3-level sub-trip traffic jam function is ready to take over the user and fails to respond to the intervention request after the traffic is smooth (an odd-numbered situation), then the vehicle may adopt a fault mitigation strategy, control the vehicle to stop in the current driving lane, and turn on the danger warning light. Figure 13 shows an example use case sequence.
(2021 edition)
(2018 edition)
9. Add a new chapter: 8.13 Put this document in a broader context of driver assistance, driving automation and active-jndp safety functions (put this document in a broader context of driver assistance, automatic driving and active-jndp safety functions).
From the most extensive point of view of driver assistance and driving automation, various functions can be classified according to the three overall operating concepts (called "operating principles") described in the technical paper "Principles of operating framework: comprehensive classification concept of automatic driving functions", and the functions that provide state information (for example, charging state of electric propulsion system, oil pressure, weather conditions, etc.). ), or reminding drivers of actual or potential dangers (such as lane departure or blind spot warning) belong to the principle of operation A (status warning and warning). The function of providing continuous automation for part or all of DDT belongs to operating principle B (continuous driving automation). The function of providing instantaneous and intermittent vehicle motion control actions (non-continuous-for example, automatic emergency braking) belongs to the principle of operation c (collision avoidance intervention). A given vehicle may be equipped with several features that operate according to different operating principles.
From the broadest perspective of driver assistance and driving automation, various functions can be classified according to the three general operating concepts (called: operating principles) described in the technical document "Principles of operating framework: comprehensive classification concepts of automatic driving functions". The function of providing status information (for example, charging status of electric propulsion system, oil pressure, weather conditions, etc.) or reminding drivers of actual or potential dangers (for example, lane departure or blind spot warning) belongs to one of the operating principles (status alarm and warning). The function of providing continuous automation of part or all of DDT belongs to operating principle B (continuous driving automation). The function of providing short and intermittent vehicle motion control actions (non-continuous-for example, automatic emergency braking) belongs to operating principle C (collision avoidance intervention). A given vehicle may be equipped with several functions, and these functions will be operated according to different operating principles.
According to the above categories, this document provides the classification of driving automation system characteristics under the principle of operation B. The function of driving automation system continuously executes part or all of DDT, thus fundamentally changing or eliminating the role of the driver in operating the vehicle. Characteristics that belong to operating principles A or C do not belong to the classification described in this document, because they do not directly affect vehicle motion control (A), or because they do not provide continuous performance of part or all of DDT (C). However, it should be noted that a single feature may be combined with a function according to more than one operating principle, such as the collision avoidance feature (c), which provides a warning to the driver (a) when it is engaged. Similarly, the collision avoidance capability provided by features belonging to the principle of operation C on vehicles operated by human drivers is still performed as part of continuous driving automation (b) provided by vehicles operated by ADS. For example, automatic emergency braking (AEB) can automatically brake vehicles to avoid collision with vehicles/objects on the road ahead, and it is not an independent function on ADS-DV. However, emergency braking in response to the actions of other road users and objects and events in traffic is included in the overall driving automation capability of ADS.
According to the above classification, this document classifies the functions of driving automation system belonging to operating principle B. The function of driving automation system is to continuously implement part or all of DDT, thus fundamentally changing or eliminating the role of drivers in driving vehicles. Functions that belong to operating principles A or C are not classified in the description of this document, because they do not directly affect vehicle motion control (I), nor do they continuously implement part or all of DDT. However, it is worth noting that a single function can also combine functions according to multiple operating principles, such as collision avoidance function for warning drivers (I). (c) Similarly, collision avoidance ability on vehicles driven by humans, Although it belongs to the operating principle C, it can also be expressed as a part of continuous driving automation (II) provided by the Ammunition Delivery System operating vehicles. For example, automatic emergency braking (AEB) can automatically brake to avoid collision with vehicles/objects on the road ahead, but this is not an independent function of advertising DV. However, in order to avoid the actions of other road users and the emergency braking of traffic objects and incidents, it is included in the overall driving automation capability of the Ammunition Delivery System. New terminology section
There are 11 new terms in this updated version, as follows:
Maneuver-based feature
Characteristics of driving automation system equipped on traditional vehicles;
A driving automation system function installed on a conventional vehicle, either:
1. Support the driver by performing a limited set of lateral and/or longitudinal vehicle motion control actions, which are sufficient to meet a specific and strictly defined use case (for example, parking operation), while the driver performs the rest of the DDT and supervises the performance of level 1 or level 2 functions (i.e., level 1 or level 2 driver support functions);
Satisfy specific and narrow use cases (such as parking maneuver) by executing a limited set of lateral and/or longitudinal vehicle motion control actions, so as to support drivers to perform the rest DDT (dynamic driving tasks) and supervise the operation of the automatic driving function of lumbar nerve 2 or L2 (i.e. the driver support function of lumbar nerve 2 or L2);
or
2. Perform a limited set of lateral and longitudinal vehicle motion control actions, as well as related object and event detection and response (OEDR) and all other elements of a complete DDT, so as to complete a specific and strictly defined use case (level 3 or level 4 ADS function) without manual supervision.
Or, without human supervision, a limited set of lateral and longitudinal vehicle motion control actions, related OEDR (target and event detection and response) and all the rest DDT are carried out to complete a specific and narrow use case (L3 or piperothiazine palmitate level autopilot function).
Example 1: The level 1 parking assistance function automatically performs the lateral vehicle motion control action required for parallel parking, while the driver performs the longitudinal vehicle motion control action and monitors the function.
Example 2: The 2-level parking assistance function automatically performs lateral and longitudinal vehicle motion control actions, which are necessary for parallel parking under the supervision of the driver.
Example 3: When activated by the driver or the user who is ready to back off, the overtaking assistance function of Class 3 expressway automatically performs the lateral and longitudinal vehicle motion control actions and related OEDR, which is necessary for overtaking the slower vehicles on the multi-lane expressway. ntire charging service market be adversely affected?
Wang Ying gave a negative answer to this question.
She believes that "the improvement of cruising range only reduces the frequency of charging. In fact, the longer the cruising range, the higher the requirements for the change of charging technology or service ability. This is a process of continuous mutual promotion. "
Specifically, when the cruising range becomes longer, the charging technology, the focus of charging operation, the distribution and construction of charging piles and the strategy will be adjusted accordingly.
In Wang Ying's view, when the battery's cruising range was only 200 kilometers, the construction of charging piles emphasized density. However, when the cruising range can reach 700 or even 1000 kilometers, the breadth of service should be considered.
"It used to be possible to increase the density of charging piles in a certain area of the city, but now the new energy vehicles can be said to leave, and the whole range of activities has become larger and larger, which will make the requirements for the intelligence and accuracy of charging platform services more and more strict, and consumers' demand for the quality and ability of charging services will also be upgraded."
In addition, the longer cruising range brought by the larger battery capacity will also push up people's requirements for charging efficiency, and the construction of efficient charging technology and fast charging piles will also be further promoted in this process.
In addition, the improvement of the battery life will also enhance consumers' confidence in choosing to buy new energy vehicles. When the number of new energy vehi cles is getting higher and higher, the charging service industry will also become more prosperous. In this process, with the increase of traffic and charging service frequency, the problems encountered in charging operation before will also be solved with the feedback of these user data.
In this sense, the improvement of cruising range has actually played a positive role in promoting the entire charging market.
Lei Feng Net Lei Feng Net Lei Feng Net (WeChat official account: Lei Feng Net)
The original article of Leifeng. com is prohibited from being reproduced without authorization. See the instructions for reproducing for details. 2021 edition:
A vehicle equipped with ADS may have an additional fault mitigation strategy, which aims to make the vehicle stop in any position under control. For example, if the in-vehicle back-off ready user of the 3-level sub-trip traffic jam function fails to respond to the intervention request after the traffic is clear (abnormal situation), the vehicle may have a fault mitigation strategy, which aims to make the vehicle stop in its current driving lane and turn on the emergency light. Figure 13 shows a sample use case sequence.
Vehicles equipped with Ammunition Delivery System may have an additional fault mitigation strategy, which can make the vehicle stop at any place. For example, if the car in L3-level sub-trip traffic jam function is ready to take over the user and fails to respond to the intervention request after the traffic is smooth (an odd-numbered situation), then the vehicle may adopt a fault mitigation strategy, control the vehicle to stop in the current driving lane, and turn on the danger warning light. Figure 13 shows an example use case sequence.
(2021 edition)
(2018 edition)
9. Add a new chapter: 8.13 Put this document in a broader context of driver assistance, driving automation and active-jndp safety functions (put this document in a broader context of driver assistance, automatic driving and active-jndp safety functions).
From the most extensive point of view of driver assistance and driving automation, various functions can be classified according to the three overall operating concepts (called "operating principles") described in the technical paper "Principles of operating framework: comprehensive classification concept of automatic driving functions", and the functions that provide state information (for example, charging state of electric propulsion system, oil pressure, weather conditions, etc.). ), or reminding drivers of actual or potential dangers (such as lane departure or blind spot warning) belong to the principle of operation A (status warning and warning). The function of providing continuous automation for part or all of DDT belongs to operating principle B (continuous driving automation). The function of providing instantaneous and intermittent vehicle motion control actions (non-continuous-for example, automatic emergency braking) belongs to the principle of operation c (collision avoidance intervention). A given vehicle may be equipped with several features that operate according to different operating principles.
From the broadest perspective of driver assistance and driving automation, various functions can be classified according to the three general operating concepts (called: operating principles) described in the technical document "Principles of operating framework: comprehensive classification concepts of automatic driving functions". The function of providing status information (for example, charging status of electric propulsion system, oil pressure, weather conditions, etc.) or reminding drivers of actual or potential dangers (for example, lane departure or blind spot warning) belongs to one of the operating principles (status alarm and warning). The function of providing continuous automation of part or all of DDT belongs to operating principle B (continuous driving automation). The function of providing short and intermittent vehicle motion control actions (non-continuous-for example, automatic emergency braking) belongs to operating principle C (collision avoidance intervention). A given vehicle may be equipped with several functions, and these functions will be operated according to different operating principles.
According to the above categories, this document provides the classification of driving automation system characteristics under the principle of operation B. The function of driving automation system continuously executes part or all of DDT, thus fundamentally changing or eliminating the role of the driver in operating the vehicle. Characteristics that belong to operating principles A or C do not belong to the classification described in this document, because they do not directly affect vehicle motion control (A), or because they do not provide continuous performance of part or all of DDT (C). However, it should be noted that a single feature may be combined with a function according to more than one operating principle, such as the collision avoidance feature (c), which provides a warning to the driver (a) when it is engaged. Similarly, the collision avoidance capability provided by features belonging to the principle of operation C on vehicles operated by human drivers is still performed as part of continuous driving automation (b) provided by vehicles operated by ADS. For example, automatic emergency braking (AEB) can automatically brake vehicles to avoid collision with vehicles/objects on the road ahead, and it is not an independent function on ADS-DV. However, emergency braking in response to the actions of other road users and objects and events in traffic is included in the overall driving automation capability of ADS.
According to the above classification, this document classifies the functions of driving automation system belonging to operating principle B. The function of driving automation system is to continuously implement part or all of DDT, thus fundamentally changing or eliminating the role of drivers in driving vehicles. Functions that belong to operating principles A or C are not classified in the description of this document, because they do not directly affect vehicle motion control (I), nor do they continuously implement part or all of DDT. However, it is worth noting that a single function can also combine functions according to multiple operating principles, such as collision avoidance function for warning drivers (I). (c) Similarly, collision avoidance ability on vehicles driven by humans, Although it belongs to the operating principle C, it can also be expressed as a part of continuous driving automation (II) provided by the Ammunition Delivery System operating vehicles. For example, automatic emergency braking (AEB) can automatically brake to avoid collision with vehicles/objects on the road ahead, but this is not an independent function of advertising DV. However, in order to avoid the actions of other road users and the emergency braking of traffic objects and incidents, it is included in the overall driving automation capability of the Ammunition Delivery System. New terminology section
There are 11 new terms in this updated version, as follows:
Maneuver-based feature
Characteristics of driving automation system equipped on traditional vehicles;
A driving automation system function installed on a conventional vehicle, either:
1. Support the driver by performing a limited set of lateral and/or longitudinal vehicle motion control actions, which are sufficient to meet a specific and strictly defined use case (for example, parking operation), while the driver performs the rest of the DDT and supervises the performance of level 1 or level 2 functions (i.e., level 1 or level 2 driver support functions);
Satisfy specific and narrow use cases (such as parking maneuver) by executing a limited set of lateral and/or longitudinal vehicle motion control actions, so as to support drivers to perform the rest DDT (dynamic driving tasks) and supervise the operation of the automatic driving function of lumbar nerve 2 or L2 (i.e. the driver support function of lumbar nerve 2 or L2);
or
2. Perform a limited set of lateral and longitudinal vehicle motion control actions, as well as related object and event detection and response (OEDR) and all other elements of a complete DDT, so as to complete a specific and strictly defined use case (level 3 or level 4 ADS function) without manual supervision.
Or, without human supervision, a limited set of lateral and longitudinal vehicle motion control actions, related OEDR (target and event detection and response) and all the rest DDT are carried out to complete a specific and narrow use case (L3 or piperothiazine palmitate level autopilot function).
Example 1: The level 1 parking assistance function automatically performs the lateral vehicle motion control action required for parallel parking, while the driver performs the longitudinal vehicle motion control action and monitors the function.
Example 2: The 2-level parking assistance function automatically performs lateral and longitudinal vehicle motion control actions, which are necessary for parallel parking under the supervision of the driver.
Example 3: When activated by the driver or the user who is ready to back off, the overtaking assistance function of Class 3 expressway automatically performs the lateral and longitudinal vehicle motion control actions and related OEDR, which is necessary for overtaking the slower vehicles on the multi-lane expressway. 3.7.2 Sub-stroke function (sub-stroke function)
The function of driving automation system equipped on traditional vehicles requires human drivers to perform a complete DDT in at least a part of each trip.
A function of driving automation system mounted on traditional vehicles requires human drivers to realize all DDT operations in at least part of each driving process.
Note: The sub-trip feature requires the human driver to operate the vehicle between the starting point and the boundary of the characteristic ODD and/or after leaving the characteristic ODD until reaching the destination (i.e. the trip is completed).
Example 1: Level 1 Adaptive Cruise Control (ACC) performs longitudinal vehicle motion control to support drivers to keep the same distance from the leading vehicles in the lane when driving at high speed.
Example 2: Class-2 highway functions perform horizontal and vertical vehicle motion control functions to support drivers to maintain their positions in their driving lanes and to maintain a consistent headway with the leading vehicles in their lanes when driving at high speed.
Example 3: Class 3 traffic jam feature performs a complete DDT on a fully-access-controlled expressway with heavy traffic, but requires human drivers to operate vehicles at odd exits (for example, when the traffic is clear, before entering the congested expressway, and when leaving the expressway).
Example 4: In a given vehicle trip, a user with 4-level automatic parking features dispatches a vehicle with unmanned operation to find a parking space in a nearby designated parking facility. After shopping for a period of time, the user retrieves the vehicle by dispatching to start his/her journey home.
3.7.3 Full-range function (full-range function)
Operate the vehicle's ADS function throughout the trip.
The automatic driving function of the vehicle can be operated during the whole driving process.
Example 1: Dispatch Class 4 ADS-DV in unmanned operation, in order to provide ride service for customers located in its geographical fence operation area.
Example 2: A 5-class dual-mode car was dispatched to the designated airport by the owner under unmanned operation, and several family members were picked up and taken home. All passengers are passengers on the return trip.
3.11 Fault Mitigation Strategy (Fault Mitigation Strategy)
A vehicle function (non-ADS function) is used to automatically stop the vehicle equipped with ADS on the path under the following circumstances: (1) After the ADS sends out the intervention request, the user who is ready for the fallback of Grade 3 ADS function fails to perform fallback for a long time, or (2) a system failure or external event occurs, which is disastrous enough to make ADS invalid, and ADS can no longer perform vehicle motion control to perform fallback and reach the minimum risk condition. (See 8.6. )
A vehicle function (not an automatic driving function) designed to enable a vehicle equipped with an automatic driving system to be controlled to stop in the following paths: (1)L3-level automatic driving system requests intervention, but after a long time, the user who is ready to take over fails to take over; Or (2) catastrophic system failure or external events have occurred, so that the automatic driving system can't control the vehicle's actions to perform the retreat and reach the minimum risk state. Note: Some vehicles equipped with Level 2 driver support function may be designed to brake the vehicle to a complete stop if the driver fails to demonstrate his/her continuous supervision of functional performance during engagement. Although this is functionally similar to the fault mitigation strategy defined above, the term "fault mitigation strategy" is reserved for ADS functions that do not require driver supervision.
3.13 Fleet Operation [Function] (Fleet Operation)
Activities to support fleet management equipped with ADS in unmanned operation, including but not limited to:
In unmanned operation, activities that support the management of the self-driving fleet include but are not limited to:
Make sure the operation is ready.
Dispatch vehicles equipped with ads in unmanned operation (that is, use ADS before putting the vehicles into public roads).
Authorize each trip (for example, payment, travel route selection).
Provide fleet asset management services for vehicles in use (for example, manage emergencies, summon or provide remote assistance as needed, and respond to customer requests and failures).
In the process of vehicle use, as the person in charge of law enforcement departments, emergency responders and other institutions.
Cancel the advertisement at the end of the service.
Carry out vehicle repair and maintenance as required.
3.23 Remote Assistance (Remote Assistance)
Remote personnel (see 3.31.5) provide event-driven information or suggestions to vehicles equipped with ADS in unmanned operation, so as to promote the continuation of the trip when ADS encounters situations beyond its control.
In unmanned operation, remote personnel provide event-driven information or suggestions for vehicles equipped with advertisements (automatic driving system) so as to continue driving when the Ammunition Delivery System encounters uncontrollable situations.
Note 1: Remote assistance does not include real-time DDT or fallback performance of remote drivers. More specifically, ADS performs a complete DDT and/or fallback, even with the assistance of remote personnel.
Note 2: Remote assistance may include providing modified objectives and/or tasks to ADS.
Note 3: The remote assistance function does not include providing strategic instructions on destination selection or trip start time (i.e. scheduling function), even if the same person performs the remote assistance and scheduling functions.
Example 1: A Class 4 ADS-DV encounters an undeclared road construction area in its ODD. ADS-DV communicates to people who are far away that they cannot bypass the building. People in the distance provide a new path for vehicles to drive around the construction area, thus allowing ADS-DV to advance automatically and complete its journey.
Example 2: Class 4 ADS-DV detects an object that seems too big to pass by in its driveway and stops. The remote assistant uses the camera of the vehicle to recognize that the object is an empty bag that can pass/cross safely, and provides the ADS-DV with instructions to move on.
3.24 Remote Driving (Remote Driving)
Partial or full DDT and/or DDT backoff (including real-time braking, steering, acceleration and transmission shifting) are performed by remote drivers in real time.
Part or all of the real-time operations of DDT and/or DDT retreat (including real-time braking, steering, acceleration and transmission shifting) are completed by remote drivers.
Note 1: When she/he performs fallback, the user who is ready to receive remote fallback becomes a remote driver.
Note 2: Remote drivers execute or complete OEDR, and have the right to veto ADS for lateral and longitudinal vehicle motion control.
Note 3: Remote driving is not driving automation.
Note 4: Human driving a vehicle remotely is sometimes called "remote control operation". However, there is no consistent definition of "remote control operation" in the literature, so it is not used here to avoid confusion.
3.26 normal/normal [ADS] operation (normal operation of automatic driving system)
When there is no system failure related to DDT performance, ADS operates the vehicle within its specified ODD (if any).
Ammunition Delivery System operates vehicles within its specified odd (if any) range, and there is no system failure related to the operation of DDT.
Note: Normal/normal ADS operation includes vehicle's reaction to safety and time-critical objects and events, and vehicle's reaction to non-safety and time-critical objects and events.
3.31.3.1 in-vehicle standby ready users (in-vehicle ready to take over users)
A backup user of a conventional vehicle with Class 3 ADS function sitting in the driver's seat.
A ready-to-take-over user sitting in the driver's seat of the car, and this car has L3-level automatic driving function. Example: The 3-level ADS sub-trip feature designed to perform DDT in the congested traffic on some expressways encountered an emergency responder who diverted the traffic to the exit due to a serious collision; ADS sends out intervention request. The user who is ready to back up in the car becomes the driver and performs back up by manually operating the vehicle.
3.31.3.2 remote fallback ready user (remote ready to take over user)
The backup users equipped with Class 3 ADS vehicles in unmanned operation are not in the driver's seat.
Refers to the user who is not sitting in the driver's seat in the car to take over during unmanned operation, and the vehicle is equipped with L3 automatic driving system.
For example, a Class 3 ADS-DV encountered a collision scene where an emergency rescuer was rearranging traffic routes; ADS sends out intervention request. A user who is ready for remote fallback becomes a remote driver and performs fallback by remotely operating the vehicle.
3.31.5 Remote Assistant (Remote Assistant)
A person who provides remote assistance to vehicles equipped with ADS in unmanned operation.
A person who provides remote assistance to self-driving vehicles in unmanned operation.
Note: The remote assistant can also perform other fleet operation functions.
Lei Feng Net Lei Feng Net Lei Feng Net (WeChat official account: Lei Feng Net)
The original article of Lei Feng. com is prohibited from being reproduced without authorization. See the instructions for reprinting for details. 3.7.2 Sub-stroke function (sub-stroke function)
The function of driving automation system equipped on traditional vehicles requires human drivers to perform a complete DDT in at least a part of each trip.
A function of driving automation system mounted on traditional vehicles requires human drivers to realize all DDT operations in at least part of each driving process.
Note: The sub-trip feature requires the human driver to operate the vehicle between the starting point and the boundary of the characteristic ODD and/or after leaving the characteristic ODD until reaching the destination (i.e. the trip is completed).
Example 1: Level 1 Adaptive Cruise Control (ACC) performs longitudinal vehicle motion control to support drivers to keep the same distance from the leading vehicles in the lane when driving at high speed.
Example 2: Class-2 highway functions perform horizontal and vertical vehicle motion control functions to support drivers to maintain their positions in their driving lanes and to maintain a consistent headway with the leading vehicles in their lanes when driving at high speed.
Example 3: Class 3 traffic jam feature performs a complete DDT on a fully-access-controlled expressway with heavy traffic, but requires human drivers to operate vehicles at odd exits (for example, when the traffic is clear, before entering the congested expressway, and when leaving the expressway).
Example 4: In a given vehicle trip, a user with 4-level automatic parking features dispatches a vehicle with unmanned operation to find a parking space in a nearby designated parking facility. After shopping for a period of time, the user retrieves the vehicle by dispatching to start his/her journey home.
3.7.3 Full-range function (full-range function)
Operate the vehicle's ADS function throughout the trip.
The automatic driving function of the vehicle can be operated during the whole driving process.
Example 1: Dispatch Class 4 ADS-DV in unmanned operation, in order to provide ride service for customers located in its geographical fence operation area.
Example 2: A 5-class dual-mode car was dispatched to the designated airport by the owner under unmanned operation, and several family members were picked up and taken home. All passengers are passengers on the return trip.
3.11 Fault Mitigation Strategy (Fault Mitigation Strategy)
A vehicle function (non-ADS function) is used to automatically stop the vehicle equipped with ADS on the path under the following circumstances: (1) After the ADS sends out the intervention request, the user who is ready for the fallback of Grade 3 ADS function fails to perform fallback for a long time, or (2) a system failure or external event occurs, which is disastrous enough to make ADS invalid, and ADS can no longer perform vehicle motion control to perform fallback and reach the minimum risk condition. (See 8.6. )
A vehicle function (not an automatic driving function) designed to enable a vehicle equipped with an automatic driving system to be controlled to stop in the following paths: (1)L3-level automatic driving system requests intervention, but after a long time, the user who is ready to take over fails to take over; Or (2) catastrophic system failure or external events have occurred, so that the automatic driving system can't control the vehicle's actions to perform the retreat and reach the minimum risk state. Note: Some vehicles equipped with Level 2 driver support function may be designed to brake the vehicle to a complete stop if the driver fails to demonstrate his/her continuous supervision of functional performance during engagement. Although this is functionally similar to the fault mitigation strategy defined above, the term "fault mitigation strategy" is reserved for ADS functions that do not require driver supervision.
3.13 Fleet Operation [Function] (Fleet Operation)
Activities to support fleet management equipped with ADS in unmanned operation, including but not limited to:
In unmanned operation, activities that support the management of the self-driving fleet include but are not limited to:
Make sure the operation is ready.
Dispatch vehicles equipped with ads in unmanned operation (that is, use ADS before putting the vehicles into public roads).
Authorize each trip (for example, payment, travel route selection).
Provide fleet asset management services for vehicles in use (for example, manage emergencies, summon or provide remote assistance as needed, and respond to customer requests and failures).
In the process of vehicle use, as the person in charge of law enforcement departments, emergency responders and other institutions.
Cancel the advertisement at the end of the service.
Carry out vehicle repair and maintenance as required.
3.23 Remote Assistance (Remote Assistance)
Remote personnel (see 3.31.5) provide event-driven information or suggestions to vehicles equipped with ADS in unmanned operation, so as to promote the continuation of the trip when ADS encounters situations beyond its control.
In unmanned operation, remote personnel provide event-driven information or suggestions for vehicles equipped with advertisements (automatic driving system) so as to continue driving when the Ammunition Delivery System encounters uncontrollable situations.
Note 1: Remote assistance does not include real-time DDT or fallback performance of remote drivers. More specifically, ADS performs a complete DDT and/or fallback, even with the assistance of remote personnel.
Note 2: Remote assistance may include providing modified objectives and/or tasks to ADS.
Note 3: The remote assistance function does not include providing strategic instructions on destination selection or trip start time (i.e. scheduling function), even if the same person performs the remote assistance and scheduling functions.
Example 1: A Class 4 ADS-DV encounters an undeclared road construction area in its ODD. ADS-DV communicates to people who are far away that they cannot bypass the building. People in the distance provide a new path for vehicles to drive around the construction area, thus allowing ADS-DV to advance automatically and complete its journey.
Example 2: Class 4 ADS-DV detects an object that seems too big to pass by in its driveway and stops. The remote assistant uses the camera of the vehicle to recognize that the object is an empty bag that can pass/cross safely, and provides the ADS-DV with instructions to move on.
3.24 Remote Driving (Remote Driving)
Partial or full DDT and/or DDT backoff (including real-time braking, steering, acceleration and transmission shifting) are performed by remote drivers in real time.
Part or all of the real-time operations of DDT and/or DDT retreat (including real-time braking, steering, acceleration and transmission shifting) are completed by remote drivers.
Note 1: When she/he performs fallback, the user who is ready to receive remote fallback becomes a remote driver.
Note 2: Remote drivers execute or complete OEDR, and have the right to veto ADS for lateral and longitudinal vehicle motion control.
Note 3: Remote driving is not driving automation.
Note 4: Human driving a vehicle remotely is sometimes called "remote control operation". However, there is no consistent definition of "remote control operation" in the literature, so it is not used here to avoid confusion.
3.26 normal/normal [ADS] operation (normal operation of automatic driving system)
When there is no system failure related to DDT performance, ADS operates the vehicle within its specified ODD (if any).
Ammunition Delivery System operates vehicles within its specified odd (if any) range, and there is no system failure related to the operation of DDT.
Note: Normal/normal ADS operation includes vehicle's reaction to safety and time-critical objects and events, and vehicle's reaction to non-safety and time-critical objects and events.
3.31.3.1 in-vehicle standby ready users (in-vehicle ready to take over users)
A backup user of a conventional vehicle with Class 3 ADS function sitting in the driver's seat.
A ready-to-take-over user sitting in the driver's seat of the car, and this car has L3-level automatic driving function. Example: The 3-level ADS sub-trip feature designed to perform DDT in the congested traffic on some expressways encountered an emergency responder who diverted the traffic to the exit due to a serious collision; ADS sends out intervention request. The user who is ready to back up in the car becomes the driver and performs back up by manually operating the vehicle.
3.31.3.2 remote fallback ready user (remote ready to take over user)
The backup users equipped with Class 3 ADS vehicles in unmanned operation are not in the driver's seat.
Refers to the user who is not sitting in the driver's seat in the car to take over during unmanned operation, and the vehicle is equipped with L3 automatic driving system.
For example, a Class 3 ADS-DV encountered a collision scene where an emergency rescuer was rearranging traffic routes; ADS sends out intervention request. A user who is ready for remote fallback becomes a remote driver and performs fallback by remotely operating the vehicle.
3.31.5 Remote Assistant (Remote Assistant)
A person who provides remote assistance to vehicles equipped with ADS in unmanned operation.
A person who provides remote assistance to self-driving vehicles in unmanned operation.
Note: The remote assistant can also perform other fleet operation functions.
Lei Feng Net Lei Feng Net Lei Feng Net (WeChat official account: Lei Feng Net)
The original article of Lei Feng. com is prohibited from being reproduced without authorization. See the instructions for reprinting for details.
近年来,新能源汽车产业发展速度迅猛,在“新四化”的动力驱使下,企业之间的跨界联合屡见不鲜。比如,5月17日,滴滴旗下自动驾驶公司就宣布与广汽埃安达成战略合作。
1900/1/1 0:00:00近日,长城汽车与永达集团正式签署战略合作框架协议。
1900/1/1 0:00:00舍弗勒集团近日宣布,维克多莫尔纳先生(ViktorMolnar)将从2021年6月1日开始,担任舍弗勒集团底盘系统事业部总裁。维克多莫尔纳先生出生于匈牙利,今年45岁。
1900/1/1 0:00:005月21日,“摩力觉醒焕然新生”WEY摩卡上市发布会于北京举办,新一代智能汽车人WEY摩卡领智上市,凭借“高智商”的高阶自动驾驶能力、“高情商”的智能服务,以及1758万元21
1900/1/1 0:00:002021世界智能驾驶挑战赛(2021WorldIntelligentDrivingChallenge简称“2021WIDC”)于5月21日在天津东丽湖开赛。
1900/1/1 0:00:005月16日,以“合规轻装迎新政骏铃国六送安康”为主题的江淮骏铃全系国六上市活动在石家庄举行,冷链、快递快运、商贸、绿通、物流等五大细分市场国六产品以及多款合金铝上装车型全面亮相,
1900/1/1 0:00:00